Abstract

The catalytic wet peroxide oxidation (CWPO) of phenol from wastewater using Mg-Al LDH and calcined LDH at 500 oC was investigated. The LDH was synthesized by co-precipitation and characterized by XRD, FTIR, SEM, EDS and BET. XRD result showed that during calcination of LDH at 500 oC, LDH decomposed to the mixed oxide. The SEM images approved Mg-Al LDH comprised of flakes and the calcined LDH comprised of spherical nanoparticles. BET results indicated the specific surface area of 100.2 and 86.3 m2.g-1 for pure LDH and calcined LDH, respectively. The process was optimized by one factor at a time method and considering four process factors i.e. reaction temperature, peroxide dosage, initial phenol concentration, and reaction time. The optimum conditions resulted at initial phenol concentration of 100 ppm, reaction temperature of 60 oC, with peroxide volume of 3 mL and time on stream of 45 min over calcined LDH with maximum 85% removal of phenol. On the pure LDH, the maximum phenol removal (79%) resulted at peroxide volume of 2.5 mL at 55 min. The study concluded that the calcined Mg-Al LDH due to synergistic effect of MgO and Mg-Al mixed oxide showed higher catalytic activity despite a relatively low surface area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.