Abstract

Photon absorption by photoreceptors activates hydrolysis of cGMP, which shuts down cGMP-gated channels and decreases free Ca(2+) concentrations in outer segment. Suppression of Ca(2+) influx through the cGMP channel by light activates retinal guanylyl cyclase through guanylyl cyclase activating proteins (GCAPs) and thus expedites photoreceptors recovery from excitation and restores their light sensitivity. GCAP1 and GCAP2, two ubiquitous among vertebrate species isoforms of GCAPs that activate retGC during rod response to light, are myristoylated Ca(2+)/Mg(2+)-binding proteins of the EF-hand superfamily. They consist of one non-metal binding EF-hand-like domain and three other EF-hands, each capable of binding Ca(2+) and Mg(2+). In the metal binding EF-hands of GCAP1, different point mutations can selectively block binding of Ca(2+) or both Ca(2+) and Mg(2+) altogether. Activation of retGC at low Ca(2+) (light adaptation) or its inhibition at high Ca(2+) (dark adaptation) follows a cycle of Ca(2+)/Mg(2+) exchange in GCAPs, rather than release of Ca(2+) and its binding by apo-GCAPs. The Mg(2+) binding in two of the EF-hands controls docking of GCAP1 with retGC1 in the conditions of light adaptation and is essential for activation of retGC. Mg(2+) binding in a C-terminal EF-hand contributes to neither retGC1 docking with the cyclase nor its subsequent activation in the light, but is specifically required for switching the cyclase off in the conditions of dark adaptation by binding Ca(2+). The Mg(2+)/Ca(2+) exchange in GCAP1 and 2 operates within different range of intracellular Ca(2+) concentrations and provides a two-step activation of the cyclase during rod recovery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.