Abstract

The catalytic part of chloroplast thylakoid ATPase, the chloroplast coupling factor CF1, is reversibly inactivated during incubation in the presence of Mg2+. The inactivation has two phases. Its fast phase occurs at basic pH of the incubation medium (k = 6 min-1), while the slow phase ( k = 0.1-0.2 min-1) depends on pH only slightly throughout the studied range (5.5-9.0). As followed from changes in the inactivation effect of magnesium ions, Mg2+ affinity for the enzyme decreases dramatically with decreasing medium pH. The pH-dependence of Mg2+ dissociation apparent constant suggests that the binding/dissociation equilibrium is determined by protonation/deprotonation of specific acid-base groups of the enzyme. The analysis of pH-dependence plots gives the equilibrium constant of magnesium dissociation (3-9 μM) and the dissociation constant of the protonated groups pK 5.8-6.7). Sodium azide is known to stabilize the inactive CF1-MgADP complex; when added to the incubation medium it diminishes the Mg2+ dissociation constant and has no effect on the dissociation constant of the acid-base groups. At lower pH, Mg2+-inactivated CF1-ATPase reactivates. Octyl glucoside accelerates the reactivation, while Triton-100 affects it only slightly. The reactivation rate of membrane-bound CF1 (thylakoid ATPase) inactivated by preincubation with Mg2+ in the presence of gramicidin is a few times higher than that of isolated CF1. These results suggest that the reactivation of isolated and membrane-bound CF1-ATPase is determined by protonation of a limited number of acid-base groups buried in the enzyme molecule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.