Abstract
Anionic redox is an effective way to increase the capacity of the cathode materials. Na2Mn3O7 [Na4/7[Mn6/7□1/7]O2, □ for the transition metal (TM) vacancies] with native and ordered TM vacancies can conduct a reversible oxygen redox and be a promising high-energy cathode material for sodium-ion batteries (SIBs). However, its phase transition at low potentials (∼1.5 V vs Na+/Na) induces potential decays. Herein, magnesium (Mg) is doped on the TM vacancies to form a disordered Mn/Mg/□ arrangement in the TM layer. The Mg substitution suppresses the oxygen oxidation at ∼4.2 V by reducing the number of the Na-O-□ configurations. Meanwhile, this flexible disordering structure inhibits the generation of the dissolvable Mn2+ ions and mitigates the phase transition at ∼1.6 V. Therefore, the Mg doping improves the structural stability and its cycling performance in 1.5-4.5 V. The disordering arrangement endows Na0.49Mn0.86Mg0.06□0.08O2 with a higher Na+ diffusivity and improved rate performance. Our study reveals that oxygen oxidation is highly dependent on the ordering/disordering arrangements in the cathode materials. This work provides insights into the balance of anionic and cationic redox for enhancing the structural stability and electrochemical performance in the SIBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.