Abstract

Structural defects in Mg-doped GaN were analyzed using high-resolution scanning transmission electron microscopy combined with electron energy loss spectroscopy. The defects, in the shape of inverted pyramids, appear at high concentrations of incorporated Mg, which also lead to a reduction in free-hole concentration in Mg doped GaN. Detailed analysis pinpoints the arrangement of atoms in and around the defects and verify the presence of a well-defined layer of Mg at all facets, including the inclined facets. Our observations have resulted in a model of the pyramid-shaped defect, including structural displacements and compositional replacements, which is verified by image simulations. Finally, the total concentration of Mg atoms bound to these defects were evaluated, enabling a correlation between inactive and defect-bound dopants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call