Abstract
BackgroundThe aortic valve of the heart experiences constant mechanical stress under physiological conditions. Maladaptive valve injury responses contribute to the development of valvular heart disease. Here, we test the hypothesis that MG53 (mitsugumin 53), an essential cell membrane repair protein, can protect valvular cells from injury and fibrocalcific remodeling processes associated with valvular heart disease.Methods and ResultsWe found that MG53 is expressed in pig and human patient aortic valves and observed aortic valve disease in aged Mg53−/− mice. Aortic valves of Mg53−/− mice showed compromised cell membrane integrity. In vitro studies demonstrated that recombinant human MG53 protein protects primary valve interstitial cells from mechanical injury and that, in addition to mediating membrane repair, recombinant human MG53 can enter valve interstitial cells and suppress transforming growth factor‐β‐dependent activation of fibrocalcific signaling.ConclusionsTogether, our data characterize valve interstitial cell membrane repair as a novel mechanism of protection against valvular remodeling and assess potential in vivo roles of MG53 in preventing valvular heart disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.