Abstract

BackgroundCoxsackievirus B3 (CVB3) is the primary cause of infectious myocarditis. Aggressive immunological activation and apoptosis of myocytes contributes to progressive dysfunction of cardiac contraction and poor prognosis. MG-132, a proteasome inhibitor, regulates mitochondrial-mediated intrinsic myocardial apoptosis and downregulates NF-κB-mediated inflammation. Here, we determined whether AMPK pathway participates in MG-132-mediated myocardial protection in viral-induced myocarditis. Methods and resultsAcute viral myocarditis models were established by intraperitoneal inoculation of CVB3 in male BALB/c mice. Myocarditis and age-matched control mice were administered MG-132 and/or BML-275 dihydrochloride (BML) (AMPK antagonist) intraperitoneally daily from the day following CVB3 inoculation. MG-132 improved hemodynamics and inhibited the structural remodeling of the ventricle in mice with myocarditis, while BML largely blunted these effects. TUNEL staining and immunochemistry suggested that MG-132 exerts anti-apoptotic and anti-inflammatory effects against CVB3-induced myocardial injuries. BML attenuated the effects of MG-132 on anti-apoptosis and anti-inflammation. ConclusionMG-132 modulated apoptosis and inflammation, improved hemodynamics, and inhibited the structural remodeling of ventricles in a myocarditis mouse model via regulation of the AMPK signal pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call