Abstract
Selection is the process of selecting the momentous feature subset from the original ones. This technique is frequently used as a preprocessing technique in data mining. In this study, a new feature selection algorithm is proposed and is called Modified Fisher Score Principal Feature Analysis (MFSPFA). The new algorithm is developed by combining the proposed Modified Fisher Score (MFS) and Principal Feature Analysis (PFA). The proposed algorithm is tested on publicly available datasets. The experimental results show that, the proposed algorithm is able to reduce the futile features and improves the classification accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.