Abstract
Recently computer vision and NLP based techniques have been employed for document layout analysis where different types of elements in the document and their relative position are identified. This process is trickier as there are blocks which are structurally similar but semantically different such as title, text etc. This works attempts to use region-based CNN architecture (F-RCNN) for determining five different sections in the scientific articles. To improve the performance of detection algorithm, reading order is used as an additional feature and this model is known as MF-RCNN. First, an algorithm is formulated to find the reading order in documents which adopts Manhattan-layout using a color-coding scheme. Secondly, this information is fused with the input image without changing its shape. Experimental results show that MF-RCNN which uses the reading order performs better when compared with F-RCNN when tested on Publaynet dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.