Abstract
Prohibited item detection is crucial for the safety of public places. Deep learning, one of the mainstream methods in prohibited item detection tasks, has shown superior performance far beyond traditional prohibited item detection methods. However, most neural network architectures in deep learning still lack sufficient local feature representation ability for overlapping and small targets, and ignore the problem of semantic conflicts caused by direct feature fusion. In this paper, we propose MFPIDet, a novel prohibited item detection neural network architecture based on improved YOLOV7 to achieve reliable prohibited item detection in complex environments. Specifically, a multi-scale attention module (MAM) backbone is proposed to filter the redundant information of target regions and further applied to enhance the local feature representation ability of overlapping objects. Here, to reduce the redundant information of target regions, a squeeze-excitation (SE) block is used to filter the background. Then, aiming at enhancing the feature expression ability of overlapping objects, a multi-scale feature extraction module (MFEM) is designed for local feature representation. In addition, to obtain richer context information, We design an adaptive fusion feature pyramid network (AF-FPN) to combine the adaptive context information fusion module (ACIFM) with the feature fusion module (FFM) to improve the neck structure of YOLOV7. The proposed method is validated on the PIDray dataset, and the tested results showed that our method obtained the highest mAP (68.7%), which is improved by 3.5% than YOLOV7 methods. Our approach provides a new design pattern for prohibited item detection in complex environments and shows the development potential of deep learning in related fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.