Abstract

Remote sensing change detection involves detecting pixels that have changed from a bi-temporal image of the same location. Current mainstream change detection models use encoder-decoder structures as well as Siamese networks. However, there are still some challenges with this: (1) Existing change feature fusion approaches do not take into account the symmetry of change features, which leads to information loss; (2) The encoder is independent of the change detection task, and feature extraction is performed separately for dual-time images, which leads to underutilization of the encoder parameters; (3) There are problems of unbalanced positive and negative samples and bad edge region detection. To solve the above problems, a mutual feature-aware network (MFNet) is proposed in this paper. Three modules are proposed for the purpose: (1) A symmetric change feature fusion module (SCFM), which uses double-branch feature selection without losing feature information and focuses explicitly on focal spatial regions based on cosine similarity to introduce strong a priori information; (2) A mutual feature-aware module (MFAM), which introduces change features in advance at the encoder stage and uses a cross-type attention mechanism for long-range dependence modeling; (3) A loss function for edge regions. After detailed experiments, the F1 scores of MFNet on SYSU-CD and LEVIR-CD were 83.11% and 91.52%, respectively, outperforming several advanced algorithms, demonstrating the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.