Abstract

This research suggests a multi-level federated edge learning algorithm by leveraging the advantages of Edge Computing Paradigm. Model aggregation is partially moved from a cloud center server to edge servers in this framework, and edge servers are connected hierarchically depending on where they are located and how much computational power they have. At the same time, we considered an important issue: the heterogeneity of different client computing resources (such as device processor computing power) and server communication channels (which may be limited by geography or device). For this situation, a client and edge server selection algorithm (CESA) based on a greedy algorithm is proposed in this paper. Given resource constraints, CESA aims to select as many clients and edge servers as possible to participate in the model computation in order to improve the accuracy of the model. The simulation results show that, when the number of clients is high, the multi-level federated edge learning algorithm can shorten the model training time and improve efficiency compared to the traditional federated learning algorithm. Meanwhile, the CESA is able to aggregate more clients for training in the same amount of time compared to the baseline algorithm, improving model training accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.