Abstract
Leaked blood components, injured endothelial cells, local inflammatory response and vasospasm may converge to promote microthrombosis following subarachnoid hemorrhage (SAH). Previously, we showed that the milk fat globule-epidermal growth factor 8 (MFGE8) can mitigate SAH-induced microthrombosis. This present study was aimed to explore the molecular pathway participated in MFGE8-dependent protection on vascular endothelium. Immunofluorescence, immunoblot and behavioral tests were used to determine the molecular partner and signaling pathway mediating the effect of MFGE8 in vascular endothelium in rats with experimental SAH and controls, together with the applications of RNA silencing and pharmacological intervention methods. Relative to control, recombinant human MFGE8 (rhMFGE8) treatment increased 5-bromo-2'-deoxyuridine (BrdU) labeled new endothelial cells, reduced TUNUL-positive endothelial cells and elevated the expression of phosphatidylinositol 3-kinase (PI3K) and chemokine (C-X-C motif) ligand 12 (CXCL12), in the brains of SAH rats. These effects were reversed by MFGE8 RNA silencing, as well as following cilengitide and wortmannin intervention. These results suggest that MFGE8 promotes endothelial regeneration and mitigates endothelial DNA damage through the activation of the TIGβ5/PI3K/CXCL12 signaling pathway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.