Abstract
PurposeAt airport security checkpoints, baggage screening is aimed to prevent transportation of prohibited and potentially dangerous items. Observing the projection images generated by X-rays scanner is a critical method. However, when multiple objects are stacked on top of each other, distinguishing objects only by a two-dimensional picture is difficult, which prompts the demand for more precise imaging technology to be investigated for use. Reconstructing from 2D X-ray images to 3D-computed tomography (CT) volumes is a reliable solution.Design/methodology/approachTo more accurately distinguish the specific contour shape of items when stacked, multi-information fusion network (MFCT-GAN) based on generative adversarial network (GAN) and U-like network (U-NET) is proposed to reconstruct from two biplanar orthogonal X-ray projections into 3D CT volumes. The authors use three modules to enhance the reconstruction qualitative and quantitative effects, compared with the original network. The skip connection modification (SCM) and multi-channels residual dense block (MRDB) enable the network to extract more feature information and learn deeper with high efficiency; the introduction of subjective loss enables the network to focus on the structural similarity (SSIM) of images during training.FindingsOn account of the fusion of multiple information, MFCT-GAN can significantly improve the value of quantitative indexes and distinguish contour explicitly between different targets. In particular, SCM enables features more reasonable and accurate when expanded into three dimensions. The appliance of MRDB can alleviate problem of slow optimization during the late training period, as well as reduce the computational cost. The introduction of subjective loss guides network to retain more high-frequency information, which makes the rendered CT volumes clearer in details.Originality/valueThe authors' proposed MFCT-GAN is able to restore the 3D shapes of different objects greatly based on biplanar projections. This is helpful in security check places, where X-ray images of stacked objects need to be distinguished from the presence of prohibited objects. The authors adopt three new modules, SCM, MRDB and subjective loss, as well as analyze the role the modules play in 3D reconstruction. Results show a significant improvement on the reconstruction both in objective and subjective effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Manufacturing and Special Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.