Abstract

Gait recognition based on gait silhouette profiles is currently a major approach in the field of gait recognition. In previous studies, models typically used gait silhouette images sized at 64 × 64 pixels as input data. However, in practical applications, cases may arise where silhouette images are smaller than 64 × 64, leading to a loss in detail information and significantly affecting model accuracy. To address these challenges, we propose a gait recognition system named Multi-scale Feature Cross-Fusion Gait (MFCF-Gait). At the input stage of the model, we employ super-resolution algorithms to preprocess the data. During this process, we observed that different super-resolution algorithms applied to larger silhouette images also affect training outcomes. Improved super-resolution algorithms contribute to enhancing model performance. In terms of model architecture, we introduce a multi-scale feature cross-fusion network model. By integrating low-level feature information from higher-resolution images with high-level feature information from lower-resolution images, the model emphasizes smaller-scale details, thereby improving recognition accuracy for smaller silhouette images. The experimental results on the CASIA-B dataset demonstrate significant improvements. On 64 × 64 silhouette images, the accuracies for NM, BG, and CL states reached 96.49%, 91.42%, and 78.24%, respectively. On 32 × 32 silhouette images, the accuracies were 94.23%, 87.68%, and 71.57%, respectively, showing notable enhancements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.