Abstract

This chapter describes the molecular fractionation with conjugate caps (MFCC)-based fragmentation methods and their applications to biological systems. To account for the environmental polarization effect for each fragment calculation, electrostatic embedding was introduced into the GMFCC/molecular mechanics (MM) method which became the latest electrostatically embedded generalized molecular fractionation with conjugate caps (EE-GMFCC) method for more accurate calculation of the protein energy. The EE-GMFCC method is computationally efficient and linear-scaling with a low prefactor, and has been successfully applied to protein geometry optimization, molecular dynamics simulation, protein-ligand binding affinity calculation, and protein vibrational spectrum calculation at QM levels. The chapter combines the more accurate EE-GMFCC method with the CPCM model, denoted as EE-GMFCC-CPCM, for accurate calculation of protein solvation energy. To reduce the computational cost, the mechanical embedded (ME)-quantum mechanical (QM)/MM approach is used to describe the protein dynamics in explicit solvent while the water molecules are described by mechanical mechanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call