Abstract
Flexible plastic films from food packaging trays make up one of the largest fractions of the plastic waste stream and recycling is one of the most important actions to deal with this fraction, reducing the impact of these plastics on the environment. However, the recyclability of multi-layered films is not straightforward and in most of the cases these fractions are landfilled or incinerated. Recycling of discarded mixed polymers without previous separation often results in low mechanical properties which have lead researchers to investigate novel solutions for recycling. In this research, the concept of microfibrillar composites (MFCs) was investigated aiming to upcycle mixed polymer waste streams. A blend based on polypropylene (PP) and poly(ethylene terephthalate) (PET) at a weight ratio of 80/20 PP/PET was studied. The final step of the MFC processing was conducted using a conical twin screw extrusion. The morphological results confirmed the presence of PET microfibrils in the composites, leading to an improvement in mechanical properties such as in the tensile yield strength and strain at break. Subsequently, the MFC samples were successfully moulded into trays via thermoforming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.