Abstract

Efficient multi-object tracking (MOT) in satellite videos is crucial for numerous applications, ranging from surveillance to environmental monitoring. Existing methods often struggle with effectively exploring the correlation and contextual cues inherent in the consecutive features of video sequences, resulting in redundant feature inference and unreliable motion estimation for tracking. To address these challenges, we propose the MFACNet, a novel multi-frame features aggregating and inter-feature correlation framework for enhancing MOT in satellite videos with the idea of utilizing the features of consecutive frames. The MFACNet integrates multi-frame feature aggregation techniques with inter-feature correlation mechanisms to improve tracking accuracy and robustness. Specifically, our framework leverages temporal information across the features of consecutive frames to capture contextual cues and refine object representations over time. Moreover, we introduce a mechanism to explicitly model the correlations between adjacent features in video sequences, facilitating a more accurate motion estimation and trajectory associations. We evaluated the MFACNet using benchmark datasets for satellite-based video MOT tasks and demonstrated its superiority in terms of tracking accuracy and robustness over state-of-the-art performance by 2.0% in MOTA and 1.6% in IDF1. Our experimental results highlight the potential of precisely utilizing deep features from video sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.