Abstract

In this article, we solve the key positions prediction problem of engineering projects in smart grid, which pays more attention to the spatial-temporal distribution of projects. Many studies show that the projects are affected by multi-dimensional features such as time, space, correlation etc. However, few work can accurately predict the key positions of projects based on multi-dimensional features. In order to solve this problem, we propose the idea of multi-feature extraction, and make use of the real-world records trace to conduct multi-dimensional modeling. Then we introduce a multi-dimensional features extraction model: Multi-Feature-based GCN-LSTM (MF-GCN-LSTM) to take the effect of time, space and correlation for predicting the key positions of projects. Experiments on different datasets with various project types have proved that our model can complete the key positions prediction task efficiently. Compared with the other traditional method and non-linear models, our model shows higher prediction accuracy and robustness. Moreover, we show that the whole prediction framework MF-GCN-LSTM can be split and deployed in a distributed manner to accelerate the inference of the model under the cloud edge system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.