Abstract

Organisms across many lengthscales generate specific strategies for motion that are crucial to their survival. Here, we detail the motion of a nontraditional organism, the Mexican jumping bean, where a larva encapsulated within a seed blindly moves the seed in search of shade. Using image analysis techniques, we quantitatively describe the motion of these objects as active particles. From this experimental data, we build a computational simulation that quantitatively captures the motion of these beans. And we further evaluate the effectiveness of using the observed diffusive strategy to find shade, suggesting that the random walk is an advantageous strategy for survival.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call