Abstract

The function of MEX3C, the mammalian homolog of Caenorhabditis elegans RNA-binding protein muscle excess 3 (MEX-3), was unknown until our recent report that MEX3C is necessary for normal postnatal growth and enhances the expression of local bone Igf1 expression. Here we report the pivotal role of Mex3c in energy balance regulation. Mex3c mutation caused leanness in both heterozygous and homozygous transgenic mice, as well as a more beneficial blood glucose and lipid profile in homozygous transgenic mice, in both sexes. Although transgenic mice showed normal food intake and fecal lipid excretion, they had increased energy expenditure independent of physical activity. Mutant mice had normal body temperature, Ucp1 expression in brown adipose tissue, and muscle and liver fatty acid oxidation. Mex3c is expressed in neurons and is detectable in the arcuate nucleus, the ventromedial nucleus, and the dorsomedial nucleus of the hypothalamus. Mex3c was not detected in NPY or POMC neurons but was detected in leptin-responsive neurons in the ventromedial nucleus. Mex3c and Leptin double mutant mice were growth retarded and obese and had blood profiles similar to those of ob/ob mice but showed none of the steatosis observed in ob/ob mice. Our data show that Mex3c is involved in energy balance regulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.