Abstract

MeV electron irradiation via high voltage electron microscopy can lead to amorphous-to-crystal transition (i.e., crystallization) as well as crystal-to-amorphous transition (i.e., solid-state amorphization). Irradiation-induced crystallization can be observed in various alloy systems such as Co-, Fe-, Ni-, Pd-, and Zr-based metallic glasses, indicating that this phenomenon has wide generality in metallic materials. Irradiation-induced crystallization mechanism was discussed based on the following factors; (1) an increase in free energy for an amorphous phase, (2) the formation of crystalline clusters through modification of the atomic configuration near radiation induced defects, and (3) enhanced diffusion. The stability of an amorphous phase against irradiation-induced crystallization can be estimated from the thermal crystallization temperature (Tx), and Ni–Nb based metallic glasses have a tendency for high stability against irradiation because of high Tx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.