Abstract
Liver is a well-known immunological organ with unique microenvironment. In normal conditions, the rich immune-infiltrating cells cooperate with non-parenchymal cells, such as Kupffer cells (KCs). The presence of liver immunosuppressive microenvironment underlines the importance to dissect this interaction to understand how this cross-talk promotes tumor growth in hepatocellular carcinoma (HCC). Therefore, the aim of the study here was to probe the role of methyltransferase-like 3 (METTL3) in the HCC progression and its effect on the polarization of KCs. KCs showed M2 polarization, and METTL3 was overexpressed in our collected HCC tissues relative to adjacent tissues. METTL3 depletion inhibited the M2 polarization of KCs, thereby reverting the malignant phenotype of HCC cells in vitro and growth and metastasis in vivo. Mechanistically, YTH domain-containing family protein 1 (YTHDF1) bound to RNA-binding protein 14 (RBM14), whereas METTL3 knockdown in KCs cells suppressed RBM14 expression by decreasing N-methyladenosine (m6A) methylation. Overexpression of RBM14 mitigated the anti-tumor effects of sh-METTL3 in vitro and in vivo. It is suggested that the mechanism of sh-METTL3 suppressing the polarization of KCs and the progression of HCC is to regulate the RBM14 expression via YTHDF1-dependent m6A modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.