Abstract

BackgroundMETTL3 is known to be involved in all stages in the life cycle of RNA. It affects the tumor formation by the regulation the m6A modification in the mRNAs of critical oncogenes or tumor suppressors. In bladder cancer, METTL3 could promote the bladder cancer progression via AFF4/NF-κB/MYC signaling network by an m6A dependent manner. Recently, METTL3 was also found to affect the m6A modification in non-coding RNAs including miRNAs, lincRNAs and circRNAs. However, whether this mechanism is related to the proliferation of tumors induced by METTL3 is not reported yet.MethodsQuantitative real-time PCR, western blot and immunohistochemistry were used to detect the expression of METTL3 in bladder cancer. The survival analysis was adopted to explore the association between METTL3 expression and the prognosis of bladder cancer. Bladder cancer cells were stably transfected with lentivirus and cell proliferation and cell cycle, as well as tumorigenesis in nude mice were performed to assess the effect of METTL3 in bladder cancer. RNA immunoprecipitation (RIP), co-immunoprecipitations and RNA m6A dot blot assays were conducted to confirm that METTL3 interacted with the microprocessor protein DGCR8 and modulated the pri-miR221/222 process in an m6A-dependent manner. Luciferase reporter assay was employed to identify the direct binding sites of miR221/222 with PTEN. Colony formation assay and CCK8 assays were conducted to confirm the function of miR-221/222 in METTL3-induced cell growth in bladder cancer.ResultsWe confirmed the oncogenic role of METTL3 in bladder cancer by accelerating the maturation of pri-miR221/222, resulting in the reduction of PTEN, which ultimately leads to the proliferation of bladder cancer. Moreover, we found that METTL3 was significantly increased in bladder cancer and correlated with poor prognosis of bladder cancer patients.ConclusionsOur findings suggested that METTL3 may have an oncogenic role in bladder cancer through interacting with the microprocessor protein DGCR8 and positively modulating the pri-miR221/222 process in an m6A-dependent manner. To our knowledge, this is the first comprehensive study that METTL3 affected the tumor formation by the regulation the m6A modification in non-coding RNAs, which might provide fresh insights into bladder cancer therapy.

Highlights

  • Bladder cancer (BCA) has become the fifth most common cancer in USA, with 81,190 estimated new cases in 2018 [1]

  • methyltransferase-like 3 (METTL3) was upregulated in bladder cancer and correlated with prognosis of bladder cancer patients METTL3 was significantly upregulated in bladder cancer tissues, compared with the adjacent tissues (Fig. 1a), which was consistent with the results from tumor samples with detailed clinical information which were downloaded from TCGA database (Additional file 3: Figure S1a)

  • We found METTL3 was upregulated in bladder cancer cell lines, compared with that in the normal urinary epithelial cell line SV-HUC, both in messenger RNA (mRNA) and protein levels(Fig. 1c,d)

Read more

Summary

Introduction

Bladder cancer (BCA) has become the fifth most common cancer in USA, with 81,190 estimated new cases in 2018 [1]. Cheng.et al has verified that the m6A level in tumor tissues was significantly elevated. They further found that methyltransferase-like 3 (METTL3), an main component in the so-called m6A ‘writer’, could promote bladder cancer progression via AFF4/NF-κB/MYC signaling network by an m6A dependent manner [10]. METTL3 is known to be involved in all stages in the life cycle of RNA. It affects the tumor formation by the regulation the m6A modification in the mRNAs of critical oncogenes or tumor suppressors. METTL3 could promote the bladder cancer progression via AFF4/NF-κB/MYC signaling network by an m6A dependent manner. Whether this mechanism is related to the proliferation of tumors induced by METTL3 is not reported yet

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call