Abstract
Hypoxia-induced apoptosis of bone marrow mesenchymal stem cells (BMSCs) limits the efficacy of their transplantation for steroid-induced osteonecrosis of the femoral head (SONFH). As apoptosis and RNA methylation are closely related, exploring the role and mechanism of RNA methylation in hypoxic apoptosis of BMSCs is expected to identify new targets for transplantation of BMSCs for SONFH and enhance transplantation efficacy. We performed methylated RNA immunoprecipitation sequencing (MeRIP-seq) combined with RNA-seq on a hypoxia-induced apoptosis BMSC model and found that the RNA methyltransferase-like 3 (METTL3) is involved in hypoxia-induced BMSC apoptosis. The expression of METTL3 was downregulated in BMSCs after hypoxia and in BMSCs implanted in osteonecrosis areas. Knockdown of METLL3 under normoxic conditions promoted apoptosis of BMSCs. In contrast, overexpression of METTL3 promoted the survival of BMSCs under hypoxic conditions, and overexpression of METTL3 promoted the survival of BMSCs in the osteonecrosis area and the repair of the osteonecrosis area. Regarding the mechanism, the m6A levels of the mRNAs of anti-apoptotic genes Bcl-2, Mcl-1, and BIRC5 were significantly increased upon the overexpression of METTL3 under hypoxic conditions, which promoted the binding of Bcl-2, Mcl-1, and BIRC5 mRNAs to IGF2BP2, enhanced the mRNA stability, and increased the protein expression of the three anti-apoptotic genes. In conclusion, overexpression of METTL3 promoted m6A modification of mRNAs of Bcl-2, Mcl-1, and BIRC5, promoted the binding of IGF2BP2 to the above-mentioned mRNAs, enhanced mRNA stability, inhibited hypoxia-induced BMSC apoptosis, and promoted repair of SONFH, thereby providing novel targets for transplantation of BMSCs for SONFH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.