Abstract

tRNAs are subject to numerous modifications, including methylation. Mutations in the human N7-methylguanosine (m7G) methyltransferase complex METTL1/WDR4 cause primordial dwarfism and brain malformation, yet the molecular and cellular functionin mammals is not well understood. We developed m7G methylated tRNA immunoprecipitation sequencing (MeRIP-seq) and tRNA reduction and cleavage sequencing (TRAC-seq) to reveal the m7G tRNA methylome in mouse embryonic stem cells(mESCs). A subset of 22 tRNAs is modified at a "RAGGU" motif within the variable loop. We observe increased ribosome occupancy at the corresponding codons in Mettl1 knockout mESCs, implying widespread effects on tRNA function, ribosome pausing, and mRNA translation. Translation of cell cycle genesand those associated with brain abnormalitiesis particularly affected. Mettl1 or Wdr4 knockout mESCs display defective self-renewal and neural differentiation. Our study uncovers the complexity of the mammalian m7G tRNA methylome and highlights its essential role in ESCs with links to human disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.