Abstract

Factor analysis of well logging data can be effectively applied to calculate shale volume in hydrocarbon formations. A global optimization approach is developed to improve the result of traditional factor analysis by reducing the misfit between the observed well logs and theoretical data calculated by the factor model. Formation shaliness is directly calculated from the factor scores by a nonlinear regression relation, which is consistent in the studied area in Alaska, USA. The added advantage of the implementation of the Simulated Annealing method is the estimation of the theoretical values of nuclear, sonic, electrical as well as caliper well-logging data. The results of globally optimized factor analysis are compared and verified by independent estimates of self-potential log-based deterministic modeling. The suggested method is tested in two different shaly-sand formations in the North Aleutian Basin of Alaska and the comparative study shows that the assumed nonlinear connection between the factor scores and shale volume is applicable with the same regression constants in different burial depths. The study shows that factor analysis solved by the random search technique provides an independent in situ estimate to shale content along arbitrary depth intervals of a borehole, which may improve the geological model of the hydrocarbon structure in the investigated area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call