Abstract

Liver transplantation is one of the most effective treatments for hepatocellular carcinoma (HCC). The balance between inhibiting immune rejection and preventing tumor recurrence after liver transplantation is the key to determining the long-term prognosis of patients with HCC after liver transplantation. In our previous study, we found that capecitabine (CAP), an effective drug for the treatment of HCC, could exert an immunosuppressive effect after liver transplantation by inducing T cell ferroptosis. Recent studies have shown that ferroptosis is highly associated with autophagy. In this study, we confirmed that the autophagy inducer rapamycin (RAPA) combined with metronomic capecitabine (mCAP) inhibits glutathione peroxidase 4 (GPX4) and promotes ferroptosis in CD4+ T cells to exert immunosuppressive effects after rat liver transplantation. Compared with RAPA or mCAP alone, the combination of RAPA and mCAP could adequately reduce liver injury in rats with acute rejection after transplantation. The CD4+ T cell counts in peripheral blood, spleen, and transplanted liver of recipient rats significantly decreased, and the oxidative stress level and ferrous ion concentration of CD4+ T cells significantly increased in the combination group. In vitro, the combination of drugs significantly promoted autophagy, decreased GPX4 protein expression, and induced ferroptosis in CD4+ T cells. In conclusion, the autophagy inducer RAPA improved the mCAP-induced ferroptosis in CD4+ T cells. Our results support the concept of ferroptosis as an autophagy-dependent cell death and suggest that the combination of ferroptosis inducers and autophagy inducers is a new research direction for improving immunosuppressive regimens after liver transplantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call