Abstract

In this work, we report the first demonstration of scatterometry Optical Critical Dimension (OCD) characterization on advanced Ge Multi-Gate Field-Effect Transistor (MuGFET) or FinFET formed on a Germanium-on-Insulator (GeOI) substrate. Two critical process steps in the Ge MuGFET process flow were investigated,<i> i.e.</i> after Ge Fin formation, and after TaN gate stack etching process. All key process variations in the test structures were successfully monitored by the floating or fitting parameters in the OCD models. In addition, excellent static repeatability, with 3&sigma; lower than 0.12 nm, was also achieved. The measurement results from OCD were also compared with both Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) measurements. Excellent correlation with both SEM and TEM was achieved by employing OCD characterization, confirming scatterometry OCD as a promising metrology technique for next generation multi-gate transistor with an advanced channel material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call