Abstract

To gain a maximum benefit of high-speed optical scanning in the metrological calibration of emerging AM (Additive Manufacturing) fixtures it is necessary to investigate the metrology performance of laser line scanning in particular on coordinate measuring machines (CMMs) based on new generation of Geometrical Product Specification standard. A set of designed experiments was set up both on an actual fixture and artefacts manufactured by the Additive Manufacturing company, Materialise-RapidFit+. It enables to identify the influence of a fixture’s geometrical characteristic, material, colour, transparency and roughness, as well as of the alignment of the part coordinate system (PCS) mathematically relating to the machine coordinate system (MCS). Performance measures that were tracked included inspection accuracy, measuring repeatability and time consumption. Results demonstrate that the laser line scanning strategy enables to lower the time consumption in the order of 49% for a fixture with six locators mounted on it and a PC with 128GB RAM, especially providing a superior accuracy performance for complex geometries compared to a tactile measuring strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.