Abstract

Attosecond pulses in the soft-X-ray (SXR) to water-window energy region offer the tools for creating and studying target specific localized inner-shell electrons or holes in materials, enable monitoring or controlling charge and energy flows in a dynamic system on attosecond timescales. Recently, a number of laboratories have reported generation of continuum harmonics in the hundred-electron-volt to kilovolt region with few-cycle long-wavelength mid-infrared lasers. These harmonics have the bandwidth to support pulses with duration of few- to few-ten attoseconds. But harmonics generated in a gas medium have attochirps that cannot be fully compensated by materials over a broad spectral range; thus, realistically what are the typical shortest attosecond pulses that one can generate? To answer this question, it is essential that the temporal attosecond pulses be accurately characterized. By re-analyzing the soft X-ray harmonics reported in three recent experiments \cite{chang_natcom2017,Thomas_OE2017,Bieger_2017PRX} using a newly developed broadband phase retrieval algorithm, we show that their generated attosecond pulses are all longer than about 60 as. Since broadband pulses tend to have high-order chirps away from the spectral center of the pulse, the algorithm has to be able to retrieve accurately the phase over the whole bandwidth. Our re-evaluated pulse durations are found to be longer than those previously reported. We also introduce the autocorrelation (AC) of the streaking spectrogram. By comparing the ACs from the experiments and from the retrieved SXR pulses, the accuracy of the retrieved results can be directly visualized to ensure that correct phases have been obtained. Our retrieval method is fast and accurate, and it shall provide a powerful tool for the metrology of few-ten-attosecond pulses in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call