Abstract
Attosecond pulses in the soft-X-ray (SXR) to water-window energy region offer the tools for creating and studying target specific localized inner-shell electrons or holes in materials, enable monitoring or controlling charge and energy flows in a dynamic system on attosecond timescales. Recently, a number of laboratories have reported generation of continuum harmonics in the hundred-electron-volt to kilovolt region with few-cycle long-wavelength mid-infrared lasers. These harmonics have the bandwidth to support pulses with duration of few- to few-ten attoseconds. But harmonics generated in a gas medium have attochirps that cannot be fully compensated by materials over a broad spectral range; thus, realistically what are the typical shortest attosecond pulses that one can generate? To answer this question, it is essential that the temporal attosecond pulses be accurately characterized. By re-analyzing the soft X-ray harmonics reported in three recent experiments \cite{chang_natcom2017,Thomas_OE2017,Bieger_2017PRX} using a newly developed broadband phase retrieval algorithm, we show that their generated attosecond pulses are all longer than about 60 as. Since broadband pulses tend to have high-order chirps away from the spectral center of the pulse, the algorithm has to be able to retrieve accurately the phase over the whole bandwidth. Our re-evaluated pulse durations are found to be longer than those previously reported. We also introduce the autocorrelation (AC) of the streaking spectrogram. By comparing the ACs from the experiments and from the retrieved SXR pulses, the accuracy of the retrieved results can be directly visualized to ensure that correct phases have been obtained. Our retrieval method is fast and accurate, and it shall provide a powerful tool for the metrology of few-ten-attosecond pulses in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.