Abstract

Since 1990, the integer quantum Hall effect has provided the electrical resistance standard, and there has been a firm belief that the measured quantum Hall resistances are described only by fundamental physical constants--the elementary charge e and the Planck constant h. The metrological application seems not to rely on detailed knowledge of the microscopic picture of the quantum Hall effect; however, technical guidelines are recommended to confirm the quality of the sample to confirm the exactness of the measured resistance value. In this paper, we give our present understanding of the microscopic picture, derived from systematic scanning force microscopy investigations on GaAs/(AlGa)As quantum Hall samples, and relate these to the technical guidelines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.