Abstract

Carbonaceous aerosol, including organic carbon (OC) and elemental carbon (EC), has significant influence on human health, air quality and climate change. Accurate measurement of carbonaceous aerosol is essential to reduce the uncertainty of radiative forcing estimation and source apportionment. The accurate separation of OC and EC is controversial due to the charring of OC. Therefore, the development of reference materials (RM) for the validation of OC/EC separation is an important basis for further study. Previous RMs were mainly based on ambient air sampling, which could not provide traceability of OC and EC concentration. To develop traceable RMs with known OC/EC contents, our study applied an improved aerosol generation and mixing technique, providing uniform deposition of particles on quartz filters. To generate OC aerosol with similar pyrolytic property of ambient aerosol, both water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC) were used, and amorphous carbon was selected for EC surrogate. The RMs were analyzed using different protocols. The homogeneity within the filter was validated, reaching below 2%. The long-term stability of RMs has been validated with RSD ranged from 1.7%–3.2%. Good correlation was observed between nominal concentration of RMs with measured concentration by two protocols, while the difference of EC concentration was within 20%. The results indicated that the newly developed RMs were acceptable for the calibration of OC and EC, which could improve the accuracy of carbonaceous aerosol measurement. Moreover, the laboratory-generated EC-RMs could be suitable for the calibration of equivalent BC concentration by Aethalometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call