Abstract
BackgroundIn cell biology, increasing focus has been directed to fast events at subcellular space with the advent of fluorescent probes. As an example, voltage sensitive dyes (VSD) have been used to measure membrane potentials. Yet, even the most recently developed genetically encoded voltage sensors have demanded exhausting signal averaging through repeated experiments to quantify action potentials (AP). This analysis may be further hampered in subcellular signals defined by small regions of interest (ROI), where signal-to-noise ratio (SNR) may fall substantially. Signal processing techniques like blind source separation (BSS) are designed to separate a multichannel mixture of signals into uncorrelated or independent sources, whose potential to separate ROI signal from noise has been poorly explored. Our aims are to develop a method capable of retrieving subcellular events with minimal a priori information from noisy cell fluorescence images and to provide it as a computational tool to be readily employed by the scientific community.ResultsIn this paper, we have developed METROID (Morphological Extraction of Transmembrane potential from Regions Of Interest Device), a new computational tool to filter fluorescence signals from multiple ROIs, whose code and graphical interface are freely available. In this tool, we developed a new ROI definition procedure to automatically generate similar-area ROIs that follow cell shape. In addition, simulations and real data analysis were performed to recover AP and electroporation signals contaminated by noise by means of four types of BSS: Principal Component Analysis (PCA), Independent Component Analysis (ICA), and two versions with discrete wavelet transform (DWT). All these strategies allowed for signal extraction at low SNR (− 10 dB) without apparent signal distortion.ConclusionsWe demonstrate the great capability of our method to filter subcellular signals from noisy fluorescence images in a single trial, avoiding repeated experiments. We provide this novel biomedical application with a graphical user interface at https://doi.org/10.6084/m9.figshare.11344046.v1, and its code and datasets are available in GitHub at https://github.com/zoccoler/metroid.
Highlights
In cell biology, increasing focus has been directed to fast events at subcellular space with the advent of fluorescent probes
Simulations and real data analysis were performed to recover action potentials (AP) and electroporation signals contaminated by noise by means of four types of blind source separation (BSS): Principal Component Analysis (PCA), Independent Component Analysis (ICA), and two versions with discrete wavelet transform (DWT)
We demonstrate the great capability of our method to filter subcellular signals from noisy fluorescence images in a single trial, avoiding repeated experiments
Summary
In cell biology, increasing focus has been directed to fast events at subcellular space with the advent of fluorescent probes. Even the most recently developed genetically encoded voltage sensors have demanded exhausting signal averaging through repeated experiments to quantify action potentials (AP) This analysis may be further hampered in subcellular signals defined by small regions of interest (ROI), where signal-to-noise ratio (SNR) may fall substantially. Scientists have been using voltage sensitive dyes (VSD) to observe and quantify membrane potential because they allow simultaneous multi-site measurements and are relatively noninvasive when compared to microelectrodes. These fluorescent probes bind to cell membrane and show a shift in emission spectra correlated to the local electric field amplitude across the membrane [1]. Even with the recent development of genetically encoded protein voltage sensors with improved responses [4], where toxic effects are absent, signals must be reconstructed by exhaustive signal averaging from repeated experiments with different cell samples or different times [5, 6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.