Abstract
Multivariate time series forecasting has been drawing increasing attention due to its prevalent applications. It has been commonly assumed that leveraging latent dependencies between pairs of variables can enhance prediction accuracy. However, most existing methods suffer from static variable relevance modeling and ignorance of correlation between temporal scales, thereby failing to fully retain the dynamic and periodic interdependencies among variables, which are vital for long- and short-term forecasting. In this paper, we propose METRO, a generic framework with multi-scale temporal graphs neural networks, which models the dynamic and cross-scale variable correlations simultaneously. By representing the multivariate time series as a series of temporal graphs, both intra- and inter-step correlations can be well preserved via message-passing and node embedding update. To enable information propagation across temporal scales, we design a novel sampling strategy to align specific steps between higher and lower scales and fuse the cross-scale information efficiently. Moreover, we provide a modular interpretation of existing GNN-based time series forecasting works as specific instances under our framework. Extensive experiments conducted on four benchmark datasets demonstrate the effectiveness and efficiency of our approach. METRO has been successfully deployed onto the time series analytics platform of Huawei Cloud, where a one-month online test demonstrated that up to 20% relative improvement over state-of-the-art models w.r.t. RSE can be achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.