Abstract

Efficient and low-cost modes for detecting metro track geometry defects (TGDs) are essential for condition-prediction-based preventive maintenance, which can help improve the safety of metro operations and reduce the maintenance cost of metro tracks. Compared with the traditional TGD detection method that utilizes the track geometry car, the method that uses a portable detector to acquire the car-body vibration data (CVD) can be used on an ordinary in-service train without occupying the metro schedule line, thereby improving efficiency and reducing the cost. A convolutional neural network-based identification model for TGD, built on a differentiable architecture search, is proposed in this study to employ only the CVD acquired by a portable detector for integrated identification of the type and severity level of TGDs. Second, the random oversampling method is introduced, and a strategy for applying this method is proposed to improve the poor training effect of the model caused by the natural class-imbalance problem arising from the TGD dataset. Subsequently, a comprehensive performance-evaluation metric (track geometry defect F-score) is designed by considering the actual management needs of the metro infrastructure. Finally, a case study is conducted using actual field data collected from Beijing Subway to validate the proposed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call