Abstract
AbstractThe paper introduces a broad family of metrics applicable to finite and countably infinite strings, or, by extension, to formal structures serving as semantics for countable languages. The main focus is on applications to sets of pointed Kripke models, a semantics for modal logics. For the resulting metric spaces, the paper classifies topological properties including which metrics are topologically equivalent, providing sufficient conditions for compactness, characterizing clopen sets and isolated points, and characterizing the metrical topologies by a concept of logical convergence. We then apply the approach to maps from dynamic epistemic logic, showing that product updates with action models yield continuous maps, hence allowing for an interpretation of the iterated updates as discrete time dynamical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.