Abstract

The interest in 3D audio is constantly growing, thus leading to the appearance on the market of many microphone arrays for recording spatial audio, having a variety of sizes, number of channels and shapes, mostly spherical. Among the various characteristics that may have an influence on the quality of these systems, the presented work will deal with the spatial accuracy. The availability of robust methods for evaluating the spatial performance of the microphone arrays allows to compare the systems and to study the effect of different geometries, or beamforming algorithms. On one side, the design of new solutions can be optimized, on the other side a user can identify an optimal system depending on his needs. In this paper, two metrics for evaluating the spatial performance of microphone arrays are described, and two common formats for spatial audio are employed, Ambisonics and Spatial PCM Sampling (SPS). In the first part, the parameters Spatial Correlation and Level Difference are used for assessing the accuracy of the Ambisonics format, which is based on Spherical Harmonics functions. In the second part two classic metrics for loudspeakers, i.e., directivity factor and half power beam width, are employed for evaluating the accuracy of unidirectional virtual microphones, which constitute the base of the SPS format. In the last section, four well-known spherical microphone arrays are analyzed and compared through the described metrics and spatial audio formats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.