Abstract

The cloud computing paradigm enables the provision of cost efficient IT-services by leveraging economies of scale and sharing data center resources efficiently among multiple independent applications and customers. However, the sharing of resources leads to possible interference between users and performance problems are one of the major obstacles for potential cloud customers. Consequently, it is one of the primary goals of cloud service providers to have different customers and their hosted applications isolated as much as possible in terms of the performance they observe. To make different offerings, comparable with regards to their performance isolation capabilities, a representative metric is needed to quantify the level of performance isolation in cloud environments. Such a metric should allow to measure externally by running benchmarks from the outside treating the cloud as a black box. In this article, we propose three different types of novel metrics for quantifying the performance isolation of cloud-based systems.We consider four new approaches to achieve performance isolation in Software-as-a-Service (SaaS) offerings and evaluate them based on the proposed metrics as part of a simulation-based case study. To demonstrate the effectiveness and practical applicability of the proposed metrics for quantifying the performance isolation in various scenarios, we present a second case study evaluating performance isolation of the hypervisor Xen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.