Abstract

This paper is focused on the problem of finding a singularity of the sum of two vector fields defined on a Hadamard manifold, or more precisely, the study of a generalized equation in a Riemannian setting. We extend the concept of metric regularity to the Riemannian setting and investigate its relationship with the generalized equation in this new context. In particular, a version of Graves’s theorem is presented and we also define some concepts related to metric regularity, including the Aubin property and the strong metric regularity of set-valued vector fields. A conceptual method for finding a singularity of the sum of two vector fields is also considered. This method has as particular instances: the proximal point method, Newton’s method, and Zincenko’s method on Hadamard manifolds. Under the assumption of metric regularity at the singularity, we establish that the methods are well defined in a suitable neighborhood of the singularity. Moreover, we also show that each sequence generated by these methods converges to this singularity at a superlinear rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call