Abstract

Metrical structure refers to the phonological representations capturing the prominence relationships between syllables, usually manifested phonetically as differences in levels of stress. There is considerable diversity in the range of stress systems found cross-linguistically, although attested patterns represent a small subset of those that are logically possible. Stress systems may be broadly divided into two groups, based on whether they are sensitive to the internal structure, or weight, of syllables or not, with further subdivisions based on the number of stresses per word and the location of those stresses. An ongoing debate in metrical stress theory concerns the role of constituency in characterizing stress patterns. Certain approaches capture stress directly in terms of a metrical grid in which more prominent syllables are associated with a greater number of grid marks than less prominent syllables. Others assume the foot as a constituent, where theories differ in the inventory of feet they assume. Support for foot-based theories of stress comes from segmental alternations that are explicable with reference to the foot but do not readily emerge in an apodal framework. Computational tools, increasingly, are being incorporated in the evaluation of phonological theories, including metrical stress theories. Computer-generated factorial typologies provide a rigorous means for determining the fit between the empirical coverage afforded by metrical theories and the typology of attested stress systems. Computational simulations also enable assessment of the learnability of metrical representations within different theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call