Abstract

With the diverging improvements in CPU speeds and memory access latencies, detecting and removing memory access bottlenecks becomes increasingly important. In this work we present METRIC, a software framework for isolating and understanding such bottlenecks using partial access traces. METRIC extracts access traces from executing programs without special compiler or linker support. We make four primary contributions. First, we present a framework for extracting partial access traces based on dynamic binary rewriting of the executing application. Second, we introduce a novel algorithm for compressing these traces. The algorithm generates constant space representations for regular accesses occurring in nested loop structures. Third, we use these traces for offline incremental memory hierarchy simulation. We extract symbolic information from the application executable and use this to generate detailed source-code correlated statistics including per-reference metrics, cache evictor information, and stream metrics. Finally, we demonstrate how this information can be used to isolate and understand memory access inefficiencies. This illustrates a potential advantage of METRIC over compile-time analysis for sample codes, particularly when interprocedural analysis is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.