Abstract

The [Formula: see text] metric in item response theory is often not the most useful metric for score reporting or interpretation. In this paper, I demonstrate that the filtered monotonic polynomial (FMP) item response model, a recently proposed nonparametric item response model (Liang & Browne in J Educ Behav Stat 40:5-34, 2015), can be used to specify item response models on metrics other than the [Formula: see text] metric. Specifically, I demonstrate that any item response function (IRF) defined within the FMP framework can be re-expressed as another FMP IRF by taking monotonic transformations of the latent trait. I derive the item parameter transformations that correspond to both linear and nonlinear transformations of the latent trait metric. These item parameter transformations can be used to define an item response model based on any monotonic transformation of the [Formula: see text] metric, so long as the metric transformation is approximated by a monotonic polynomial. I demonstrate this result by defining an item response model directly on the approximate true score metric and discuss the implications of metric transformations for applied testing situations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.