Abstract

PurposeQuantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need.MethodsWe obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change.ResultsThe correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change.ConclusionThe new metric is practical and simple to calculate. It is robust to variations in image processing methods and scanning protocols, and sensitive to subtle and severe white matter damage.

Highlights

  • White matter hyperintensities (WMH) are a common neuroradiological finding detected in T2-weighted (T2 W) and fluid attenuation inversion recovery (FLAIR) structural magnetic resonance images (MRI) in older individuals and patients with neurological diseases [1]

  • We present a white matter (WM) damage metric that expressed the degree of WM disease on conventional structural MRI and was robust to variations in image processing methods used to quantify Bnormal^ and Babnormal^ WM

  • We have focused here on WMH of presumed vascular origin, this metric could be used to harmonise results in studies of other neurological diseases that present WMH on MRI

Read more

Summary

Introduction

White matter hyperintensities (WMH) are a common neuroradiological finding detected in T2-weighted (T2 W) and fluid attenuation inversion recovery (FLAIR) structural magnetic resonance images (MRI) in older individuals and patients with neurological diseases [1]. Their growing importance reflects the increasing recognition of their association with a wide range of disabilities [2], vascular risk factors [3] and impairments in activities of daily living [4]. Inter- and intra-observer variation in visual assessments [12] have motivated development of computational methods for WMH burden quantification. FLAIR-only derived thresholds are significantly affected by the WMH signal strength, anatomical distribution, extent [15] and technical factors such as bias field correction [13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call