Abstract

We present the mathematical basis of a new approach to the analysis of temporal coding. The foundation of the approach is the construction of several families of novel distances (metrics) between neuronal impulse trains. In contrast to most previous approaches to the analysis of temporal coding, the present approach does not attempt to embed impulse trains in a vector space, and does not assume a Euclidean notion of distance. Rather, the proposed metrics formalize physiologically-based hypotheses for what aspects of the firing pattern might be stimulus-dependent, and make essential use of the point process nature of neural discharges. We show that these families of metrics endow the space of impulse trains with related but inequivalent topological structures. We show how these metrics can be used to determine whether a set of observed responses have stimulus-dependent temporal structure without a vector-space embedding. We show how multidimensional scaling can be used to assess the similarity of these metrics to Euclidean distances. For two of these families of metrics (one based on spike times and one based on spike intervals), we present highly efficient computational algorithms for calculating the distances. We illustrate these ideas by application to artificial datasets and to recordings from auditory and visual cortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.