Abstract
Given two object sets Q and O, a metric similarity join finds similar object pairs according to a certain criterion. This operation has a wide variety of applications in data cleaning and data mining, to name but a few. However, the rapidly growing volume of data nowadays challenges traditional metric similarity join methods, and thus, a distributed method is required. In this paper, we adopt a popular distributed framework, namely, MapReduce, to support scalable metric similarity joins. To ensure the load balancing, we present two sampling based partition methods. One utilizes the pivot and the space-filling curve mappings to cluster the data into one-dimensional space, and then selects high quality centroids to enable equal-sized partitions. The other uses the KD-tree partitioning technique to equally divide the data after the pivot mapping. To avoid unnecessary object pair evaluation, we propose a framework that maps the two involved object sets in order, where the range-object filtering, the double-pivot filtering, the pivot filtering, and the plane sweeping techniques are utilized for pruning. Extensive experiments with both real and synthetic data sets demonstrate that our solutions outperform significantly existing state-of-the-art competitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Knowledge and Data Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.