Abstract

Liquid crystal elastomers contract along their director on heating and recover on cooling, offering great potential as actuators and artificial muscles. If a flat sheet is programed with a spatially varying director pattern, then it will actuate into a curved surface, allowing the material to act as a strong machine such as a grabber or lifter. Here we study the actuation of programed annular sheets which, owing to their central hole, can sidestep constraints on area and orientation. We systematically catalog the set of developable surfaces encodable via axisymmetric director patterns and uncover several qualitatively new modes of actuation, including cylinders, irises, and everted surfaces in which the inner boundary becomes the outer boundary after actuation. We confirm our designs with a combination of experiments and numerics. Many of our actuators can reattain their initial inner or outer radius upon completing actuation, making them particularly promising, as they can avoid potentially problematic stresses in their activated state even when fixed onto a frame or pipe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.