Abstract
We consider a Lorentzian manifold M which is globally hyperbolic. We define a metric on C(p, q), the set of all equivalence classes of causal curves connecting two causally related points p and q. We show that C(p, q) is a complete metric space with the metric thus defined. Here, by completeness we mean that every Cauchy sequence (a sequence with a tendency to converge) in C(p, q) finds a point in it to converge. We also give an example to show that the result does not hold in general when the spacetime is not globally hyperbolic. The work is in line with research on causality in relativistic spacetimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.