Abstract

The oxidative metabolism of metoprolol has been shown to display genetic polymorphism of the debrisoquine-type. The use of in vitro inhibition studies has been proposed as a means of denning whether one or more forms of cytochrome P-450 are involved in the rnonogenically-controlled metabolism of two substrates. We have, therefore, tested the ability of debrisoquine and other substrates to inhibit the oxidation of metoprolol by rat liver microsomes. Debrisoquine and guanoxan were potent competitive inhibitors of the α-hydroxylation and O-desmethylation of metoprolol as well as its metabolism by all routes (measured by substrate disappearance). Cimetidine and ranitidine, drugs which are known to impair the clearance of metoprolol in man, showed an inhibitory action comparable to that of debrisoquine in rat liver microsomes. Antipyrine, a compound whose metabolism is not impaired in poor metabolisers of debrisoquine, was found to be only a weak inhibitor of the metabolism of metoprolol. These findings suggest that the oxidation of metoprolol is linked closely to that of debrisoquine, cimetidine and ranitidine but not to that of antipyrine in the rat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.